
1

 Computer system recovery:
◦ Restore the system to a normal operational state

 Process recovery:
◦ Reclaim resources allocated to process,

◦ Undo modification made to databases, and

◦ Restart the process

◦ Or restart process from point of failure and resume execution

 Distributed process recovery (cooperating processes):
◦ Undo effect of interactions of failed process with other cooperating processes.

 Replication (hardware components, processes, data):
◦ Main method for increasing system availability

 System:
◦ Set of hardware and software components

◦ Designed to provide a specified service (I.e. meet a set of requirements)

2

System failure:
◦ System does not meet requirements, i.e.does not perform its services as

specified

Erroneous System State:

◦ State which could lead to a system failure by a sequence of valid state
transitions

◦ Error: the part of the system state which differs from its intended value

Fault:

◦ Anomalous physical condition, e.g. design errors, manufacturing
problems, damage, external disturbances.

3

Error could lead to system failure

Error is a manifestation of a fault

Process failure:
◦ Behavior: process causes system state to deviate from specification (e.g.

incorrect computation, process stop execution)
◦ Errors causing process failure: protection violation, deadlocks, timeout, wrong

user input, etc…
◦ Recovery: Abort process or
 Restart process from prior state

System failure:
◦ Behavior: processor fails to execute
◦ Caused by software errors or hardware faults (CPU/memory/bus/…/ failure)
◦ Recovery: system stopped and restarted in correct state
◦ Assumption: fail-stop processors, i.e. system stops execution, internal state is

lost

Secondary Storage Failure:
◦ Behavior: stored data cannot be accessed
◦ Errors causing failure: parity error, head crash, etc.
◦ Recovery/Design strategies:

Reconstruct content from archive + log of activities

Design mirrored disk system

Communication Medium Failure:
◦ Behavior: a site cannot communicate with another operational site
◦ Errors/Faults: failure of switching nodes or communication links
◦ Recovery/Design Strategies: reroute, error-resistant communication protocols

4

Failure recovery: restore an erroneous state to an error-free state

Approaches to failure recovery:

◦ Forward-error recovery:

 Remove errors in process/system state (if errors can be completely assessed)

 Continue process/system forward execution

◦ Backward-error recovery:

 Restore process/system to previous error-free state and restart from there

Comparison: Forward vs. Backward error recovery

◦ Backward-error recovery

(+) Simple to implement

(+) Can be used as general recovery mechanism

(-) Performance penalty

(-) No guarantee that fault does not occur again

(-) Some components cannot be recovered

◦ Forward-error Recovery

(+) Less overhead

(-) Limited use, i.e. only when impact of faults understood

(-) Cannot be used as general mechanism for error recovery

5

Principle: restore process/system to a known, error-free “recovery point”/
“checkpoint”.

System model:

Approaches:
(1) Operation-based approach

(2) State-based approach

6

 CPU

 Main memory

secondary

storage

stable

storage

Storage that

maintains

information in

the event of

system failure

Bring object to MM

to be accessed

Store logs and

recovery points

Write object back

if modified

Principle:
◦ Record all changes made to state of process (‘audit trail’ or ‘log’) such

that process can be returned to a previous state
◦ Example: A transaction based environment where transactions update a

database
 It is possible to commit or undo updates on a per-transaction basis
 A commit indicates that the transaction on the object was successful and

changes are permanent

(1.a) Updating-in-place
• Principle: every update (write) operation to an object creates a log in

stable storage that can be used to ‘undo’ and ‘redo’ the operation
• Log content: object name, old object state, new object state
• Implementation of a recoverable update operation:

– Do operation: update object and write log record
– Undo operation: log(old) -> object (undoes the action performed by a

do)
– Redo operation: log(new) -> object (redoes the action performed by

a do)
– Display operation: display log record (optional)

• Problem: a ‘do’ cannot be recovered if system crashes after write object
but before log record write

(1.b) The write-ahead log protocol
• Principle: write log record before updating object

7

Principle: establish frequent ‘recovery points’ or ‘checkpoints’
saving the entire state of process

Actions:
◦ ‘Checkpointing’ or ‘taking a checkpoint’: saving process state

◦ ‘Rolling back’ a process: restoring a process to a prior state

Note: A process should be rolled back to the most recent ‘recovery
point’ to minimize the overhead and delays in the completion of
the process

Shadow Pages: Special case of state-based approach
◦ Only a part of the system state is saved to minimize recovery

◦ When an object is modified, page containing object is first copied on
stable storage (shadow page)

◦ If process successfully commits: shadow page discarded and
modified page is made part of the database

◦ If process fails: shadow page used and the modified page discarded

8

 Issue: if one of a set of cooperating processes fails and has to be rolled
back to a recovery point, all processes it communicated with since the
recovery point have to be rolled back.

 Conclusion: In concurrent and/or distributed systems all cooperating
processes have to establish recovery points

 Orphan messages and the domino effect

◦ Case 1: failure of X after x3 : no impact on Y or Z

◦ Case 2: failure of Y after sending msg. ‘m’
 Y rolled back to y2

 ‘m’ ≡ orphan massage

 X rolled back to x2

◦ Case 3: failure of Z after z2

 Y has to roll back to y1

 X has to roll back to x1 Domino Effect

 Z has to roll back to z1

9

X

Y

Z

y1

x1

z1 z2

x2

y2

x3

m

Time

 Assume that x1 and y1 are the only recovery points for processes X and

Y, respectively

 Assume Y fails after receiving message ‘m’

 Y rolled back to y1, X rolled back to x1

 Message ‘m’ is lost

Note: there is no distinction between this case and the case where
message ‘m’ is lost in communication channel and processes X and Y
are in states x1 and y1, respectively

10

X

Y y1

x1

m

Time

Failure

 Livelock: case where a single failure can cause an infinite number of
rollbacks

 Process Y fails before receiving message ‘n1’ sent by X

 Y rolled back to y1, no record of sending message ‘m1’, causing X to roll back
to x1

 When Y restarts, sends out ‘m2’ and receives ‘n1’ (delayed)

 When X restarts from x1, sends out ‘n2’ and receives ‘m2’

 Y has to roll back again, since there is no record of ‘n1’ being sent

 This cause X to be rolled back again, since it has received ‘m2’ and there is no
record of sending ‘m2’ in Y

 The above sequence can repeat indefinitely

11

X

Y y1

x1

m1

Time

Failure

n1

(a)

X

Y y1

x1

m2

Time

2nd roll back

n2
n1

(b)

(a)

(b)

 Checkpointing in distributed systems requires that all processes
(sites) that interact with one another establish periodic
checkpoints

 All the sites save their local states: local checkpoints

 All the local checkpoints, one from each site, collectively form a
global checkpoint

 The domino effect is caused by orphan messages, which in turn
are caused by rollbacks

1. Strongly consistent set of checkpoints

◦ Establish a set of local checkpoints (one for each process in
the set) such that no information flow takes place (i.e., no
orphan messages) during the interval spanned by the
checkpoints

2. Consistent set of checkpoints

◦ Similar to the consistent global state

◦ Each message that is received in a checkpoint (state) should
also be recorded as sent in another checkpoint (state)

12

